Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 216: 118381, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35381430

ABSTRACT

Dark carbon fixation (DCF) contributes approximately 0.77 Pg C y-1 to oceanic primary production and the global carbon budget. It is estimated that nearly half of the DCF in marine sediments occurs in estuarine and coastal regions, but the environmental factors controlling DCF and the microorganisms responsible for its production remain under exploration. In this study, we investigated DCF rates and the active chemoautotrophic microorganisms in intertidal sediments of the Yangtze Estuary, using 14C-labeling and DNA-stable isotope probing (DNA-SIP) techniques. The measured DCF rates ranged from 0.27 to 3.37 mmol C m-2 day-1 in intertidal surface sediments. The rates of DCF were closely related to sediment sulfide content, demonstrating that the availability of reductive substrates may be the dominant factor controlling DCF in the intertidal sediments. A significant positive correlation was also observed between the DCF rates and abundance of the cbbM gene. DNA-stable isotope probing (DNA-SIP) results further confirmed that cbbM-harboring bacteria, rather than cbbL-harboring bacteria, played a dominant role in DCF in intertidal sediments. Phylogenetic analysis showed that the predominant cbbM-harboring bacteria were affiliated with Burkholderia, including Sulfuricella denitrificans, Sulfuriferula, Acidihalobacter, Thiobacillus, and Sulfurivermis fontis. Moreover, metagenome analyses indicated that most of the potential dark-carbon-fixing bacteria detected in intertidal sediments also harbor genes for sulfur oxidation, denitrification, or dissimilatory nitrate reduction to ammonium (DNRA), indicating that these chemoautotrophic microorganisms may play important roles in coupled carbon, nitrogen, and sulfur cycles. These results shed light on the ecological importance and the underlying mechanisms of the DCF process driven by chemoautotrophic microorganisms in intertidal wetlands.


Subject(s)
Bacteria , Carbon Cycle , Bacteria/genetics , Carbon , DNA , Geologic Sediments/chemistry , Nitrates/analysis , Nitrogen , Phylogeny , Sulfur
2.
J Microbiol ; 59(1): 10-19, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33201437

ABSTRACT

Ammonia oxidation, performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays a critical role in the cycle of nitrogen in the ocean. For now, environmental variables controlling distribution of ammonia-oxidizing microbes are still largely unknown in oceanic environments. In this study, we used real-time quantitative PCR and high-throughput sequencing methods to investigate the abundance and diversity of AOA and AOB from sediment and water in Zhanjiang Bay. Phylogenic analysis revealed that the majority of AOA amoA sequences in water and sediment were affiliated with the genus Nitrosopumilus, whereas the Nitrosotalea cluster was only detected with low abundance in water. Nitrosomonas and Nitrosospira dominated AOB amoA sequences in water and sediment, respectively. The amoA copy numbers of both AOA and AOB varied significantly with month for both sediment and water. When water and sediment temperature dropped to 17-20°C in December and February, respectively, the copy number of AOB amoA genes increased markedly and was much higher than for AOA amoA genes. Also, AOA abundance in water peaked in December when water temperature was lowest (17-20°C). Stepwise multiple regression analyses revealed that temperature was the most key factor driving monthly changes of AOA or AOB abundance. It is inferred that low water temperature may inhibit growth of phytoplankton and other microbes and so reduce competition for a common substrate, ammonium.


Subject(s)
Ammonia/metabolism , Bacteria/isolation & purification , Bays/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biota , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeny , Seasons , Seawater/microbiology
3.
Curr Microbiol ; 77(11): 3492-3503, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32929577

ABSTRACT

Nitrospira is the most diverse genus of nitrite-oxidizing bacteria, and its members are widely spread in various natural and engineered ecosystems. In this study, the phylogenetic diversity of Nitrospira and monthly changes of its abundance from Zhanjiang Bay were investigated. Phylogenetic analysis showed that among 58 OTUs with high abundance, 74% were not affiliated with any previously described Nitrospira species, revealing a previously unrecognized diversity of coastal Nitrospira. The abundances of both Nitrospira and Nitrospina exhibited a significantly monthly change. During most of the months, abundance of Nitrospina was greater than that of Nitrospira. In particle-attached communities, either abundance of Nitrospina or Nitrospira was highly correlated with that of ammonia-oxidizing archaea (AOA), whereas abundance of ammonia-oxidizing bacteria was only highly correlated with that of Nitrospina. In free-living communities, either abundance of Nitrospina or Nitrospira was correlated only with that of AOA. These results suggest that both Nitrospira and Nitrospina can be involved in nitrite oxidation by coupling with AOA, but Nitrospina may play a greater role than Nitrospira in this tropical bay.


Subject(s)
Ecosystem , Soil Microbiology , Ammonia , Archaea/genetics , Bacteria/genetics , Bays , Nitrification , Oxidation-Reduction , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...